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ABSTRACT
The Ruddy-headed Goose (Chloephaga rubidiceps) has two separate populations: one sedentary, 
which resides in the Falkland/Malvinas Islands and one migratory that overwinters mainly in the 
Pampas region (Argentina) and breeds in Southern Patagonia (Argentina and Chile). The migratory 
population has decreased considerably to less than 800 individuals and is categorised as 
Endangered in Argentina and Chile. Knowing the dates at which birds leave the wintering grounds 
might help to predict the arrival date at stopover sites and breeding areas. We aimed to examine 
the effect of meteorological conditions on the decision of Ruddy-headed Geese to start spring 
migration and their migration strategy. We used data from six adults, equipped with satellite 
transmitters, over 4 years (2015–2018), giving 12 individual departure dates. Weather conditions on 
departure dates were compared with that during the 15 preceding days. We tested the influence of 
weather conditions on the response variable measured as a comparison of pre-migration dates 
versus departure dates. Our results showed that Ruddy-headed Geese departure from their 
wintering grounds is in association with high wind speed, good visibility and low percentage of 
cloud cover. The relationship between meteorological conditions and the species decision to start 
spring migration is essential information for future management plans to prevent potential 
human-sheldgeese conflicts to escalate along their migration route. Recommendations for the 
conservation of this species that include implementing mitigation measures to reduce bird colli-
sion at human infrastructure, could be applied more specifically during the periods when birds are 
expected to arrive in each area.
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Introduction

One of the most important decisions faced by ani-
mals is how and when to move in time and space. 
These movement decisions will determine how to 
find food or avoid adverse weather conditions, find 
a mate and evade predators (Miller et al. 2017). 
Hence, these decisions affect individual survival and 
fitness (Sharma et al. 2009).

Several long-distance migratory birds travel across 
inhospitable oceans or deserts (Alerstam and 
Hedenstrom 1998; Alerstam 2009). The severe fitness 
cost of long under arduous conditions presumably 
have selected migrants that adaptively manage time, 
energy, and exposure to adverse meteorological con-
ditions (Alerstam and Hedenstrom 1998; Alerstam 
2009). Migrants also show behavioural plasticity in 
terms of when to depart or selection of stopovers, 

based on local weather conditions (Alerstam and 
Hedenstrom 1998). Furthermore, wind conditions 
(direction and speed) could influence the cost of 
transport and the risk of being blown off to less 
advantageous routes (Navedo et al. 2010). In addi-
tion, moonlight is associated with behavioural and 
physiological changes in animals (Portugal et al. 
2019). Other studies indicated that warmer tempera-
tures increased the probability of departure of 
migrants birds (Bauer et al. 2008), and can also 
enhance opportunities to refuel at a given site by 
affecting food availability and, as a consequence, 
physiology (Ktitorov et al. 2021). Moreover, visibility 
and cloud cover might affect the ability to navigate 
and spot suitable stopover sites (Newton 2007). 
Thus, high or rising temperatures, clear sky and no 
rainfall are associated with more frequent departures 
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from wintering or staging areas (Liechti 2006). In 
particular, rainfall negatively affects migratory pro-
gression (Gordo 2007) and impacts the decision to 
depart for some long-distance migratory birds 
(Navedo et al. 2010).

Among waterbirds, the Ruddy-headed Goose 
(Chloephaga rubidiceps) is the smallest of the five South 
American sheldgeese and has two separate populations: 
one sedentary, which resides in the Falkland/ Malvinas 
Islands, and one migratory that overwinters mainly in the 
Pampas region (Argentina) and breeds in Southern 
Patagonia (Argentina and Chile) (Pedrana et al. 2020). 
Recent findings postulated that these two populations are 
genetically isolated (Bulgarella et al. 2014; Kopuchian 
et al. 2016). Still, the Ruddy-headed Goose is considered 
as Least Concern (Birdlife International 2016) by the 
IUCN Red List because it has a large global population 
(ca. 43,000 to 82,000 individuals; Woods and Woods 
2006). While the sedentary population appears to be 
stable, the migratory population has decreased consider-
ably and current estimates indicate that there are less than 
800 individuals (Cossa et al. 2017; Pedrana et al. 2018a). 
As a result, this population has been categorised as 
Critically Endangered in Argentina (AA/AOP, and 
SAyDS 2008) and endangered in Chile (CONAMA 
2009). Pedrana et al. (2020) provided the first documen-
tation of consecutive migration cycles of this species 
using satellite tracking devices and identified stopover 
sites along their flyways, and breeding and wintering 
grounds. The authors showed that tracked individuals 
used the eastern Patagonia migration route along the 
Atlantic coast and showed philopatry to their breeding 
and wintering sites (Pedrana et al. 2018b, 2020).

The migratory population of Ruddy-headed Geese over-
winters in the Southern Pampas, which is one of the most 
human-modified temperate grasslands ecosystems of the 
world (Baeza and Paruelo 2020). This species was histori-
cally considered harmful to agriculture and local farmers 
have decimated geese populations (Blanco and de la Balze 
2006). Unfortunately, Ruddy-headed Geese encounter 
another threat during their migration routes along the 
Atlantic coast (Pedrana et al., in press). Currently, wind 
farms are being installed all along the Patagonian coast. 
Knowing the precise moment this species decides to leave 
its wintering grounds might help to predict the arrival date 
in stopover sites and breeding areas. Our aim was to 
examine the effect of meteorological conditions on the 
decision of Ruddy-headed Geese to start spring migration. 
We hypothesised that this decision depends on the prevail-
ing weather conditions, and predicted that individuals 
would start migration on days with high wind speeds and 

temperature, favourable southerly wind direction, clear 
sky, good visibility, high percentage of moonlight and low 
precipitation, humidity and pressure (Table A1).

Methods

Study area and Ruddy-headed Geese tracking data

Six Ruddy-headed Geese were captured in their wintering 
area in the southern Pampas (38°33ʹS; 59°42ʹW, Figure 
B1) using foot-noose carpets in August 2015 and 
July 2016 (Pedrana et al. 2020). Directly after catching, 
birds were equipped with solar-powered satellite trans-
mitters (Model 23GS, North Star, USA) which were 
attached to the back using a Teflon harness (Humphrey 
and Avery 2014). Platform Transmitter Terminal (PTTs), 
including harness, weighed 30 g which represented less 
than 1.8% of the adult body mass (Pedrana et al. 2020). 
Procedures for capture and handling were approved by 
the Buenos Aires Provincial Agency for Sustainable 
Development (OPDS), Argentina. PTTs were pro-
grammed to transmit with a duty cycle of 6 h on/ 18 h 
off (local time, GMT-3). Geographical locations were 
provided by the Argos service, with location accuracy 
(class designation) calculated using the Kalman filtering 
method (ARGOS 2016). We used only good quality posi-
tions with Argos Location Classes (LC) 3, 2, and 1 (accu-
racy ≤ 1500 m), which were incorporated into 
a Geographical Information System.

Weather during pre-migration and departure dates

Ruddy-headed Geese arrive in their main wintering 
grounds around mid-May and start their spring migra-
tion between mid-August when they fly to their breed-
ing grounds (Pedrana et al. 2020).

Gorosábel et al. (2019) reported that the number of 
Sheldgeese feeding on wheat crops was lower at the end 
of the wintering season (mid-August), which agrees with 
data from other waterfowl species that also spend less time 
feeding when they are close to start migration (Shariati 
Najafabadi et al. 2010), and that Sheldgeese gather in big 
assemblages around 2 weeks before they start migrating. 
Since the wintering area is large, most of these lands are 
private, and birds make daily movements between feeding 
and resting sites while in the Pampas region (Pedrana et al. 
2020), it was impossible to know the exact day that these 
birds begin the spring migration by direct observation. 
Therefore, we can determine the exact date these birds 
start spring migration only by tracking individuals.
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Weather conditions during departure dates from the 
wintering grounds were compared with those during 
the 15 preceding days. We tested for possible effects 
on nine meteorological variables: wind velocity, wind 
direction, cloud cover, visibility, precipitation, humid-
ity, air pressure and moonlight (Figure 1, Table A1). We 
obtained hourly values for each variable from the 
weather station (120 ± 35 km) provided by the 
Weather Information Service (www.ogimet.com) near-
est to location of each tracked bird (Based on those in 
Argos LC 1–3). We developed a script to automatically 
download the weather conditions for any date and loca-
tion (https://gitlab.com/lailakaz1986/obtaining-climatic 
-variables-from-website).

Statistical framework

We built Binomial Generalised Linear Mixed Models 
(GLMMs) to study the influence of weather conditions 
(Table A1) on the response variable measured as 
a comparison of pre-migration dates versus departure 
date (Appendix A). The departure date was set as 1, 
while the previous fifteen days considered were set as 0. 
We set the identity of each individual, (Figure 1, Table 
A1) the year and their interaction as random effects. We 
used the Spearman rank correlation coefficient (rs) to 
detect if two variables were correlated (rs > 0.6). For the 
model selection, we started with a full model, which 
included all non-correlated predictors and used the 
p-value to eliminate non-significant variables. Models 
were compared using the Akaike Information Criteria 
(AIC) value, Bayesian Information Criteria (BIC) and 
Analysis of Variance (ANOVA) test in order to select 
the best one.

Results

All Ruddy-headed Geese captured in their main winter-
ing grounds were males and weighed ca. 1.83 ± 0.19 kg 
(Table B1). Over the years, all tracked geese returned to 
the same capture areas and departed from their winter-
ing sites (Figure B1) between the 12th and 30th of August 
to start their spring migration (Table B1). We recorded 
the departure date of six individuals during three con-
secutive years (i.e. a total of 1325 positions from 2015- 
Pedrana et al. 2020), with a total of twelve departure 
dates because some individuals stopped transmitting.

The most parsimonious GLMM model for the tracked 
Ruddy-headed Geese that tested the influence of weather 
conditions on the decision to start spring migration incor-
porated three variables: visibility, wind speed and cloud 
cover (Table 1). As hypothesised, the probability of this 
species starting south-bound migration increased on days 

with good visibility, low percentage of clouds and high 
wind velocity (Table 1). Departure dates of Ruddy- 
headed Geese from their wintering grounds were charac-
terised by a mean visibility of 20 km (se = 8, 
Maximum = 30 km), wind velocity of 14 km/h (se = 7, 
Maximum = 43 km/h), and cloud cover of 24% (se = 21, 
Maximum = 46%). Meanwhile, weather condition during 
the 15 preceding days were characterised by a mean visibi-
lity of 12 km (se = 5, Maximum = 30 km), wind velocity of 
12 km/h (se = 5, Maximum = 25 km/h), and cloud cover of 
36% (se = 24, Maximum = 62%).

Discussion

This study uses satellite-tracking data to assess for the first 
time how meteorological conditions affect the decision of 
Ruddy-headed Geese to depart from their wintering 
grounds. Our results suggest that Ruddy-headed Geese 
depart from their wintering grounds in southeast Buenos 
Aires province (Argentina) under high wind speed, good 
visibility, and low cloud cover.

Wind conditions are recognised as an important factor 
affecting timing of migration (Åkesson and Hedenström 
2000). Navedo et al. (2010) concluded that wind helps 
birds to take the direct route with lower associated travel 
costs and allow them to arrive at the next stopover site at an 
optimal time to rebuild their energy stores. Following the 
hypothesis of the ‘departure time window’, after a period in 
the area storing enough energy for flight, birds should depart 
when favourable wind conditions will assist flight (Weber 
et al. 1998). Ruddy-headed Geese are in their wintering 
grounds since the end of May, feeding on wheat crops 
while building up their energy reserves. At the end of their 
wintering period, the number of geese eating on wheat crops 
is lower and they gather in big assemblages before they start 
migrating (Gorosábel et al. 2019).

On the other hand, good visibility conditions and low 
cloud percentage could also affect the ability to navigate 
(Newton 2007). Visual cues for flight departure could be 
important during night flights for orientation, and clear 
sky and good visibility could allow birds to have access 
to celestial orientation cues (Åkesson et al. 2021). 
Reduced cloud cover and higher visibility were found 

Table 1. Meteorological variables included in the most parsimo-
nious model testing the response variable measured as 
a comparison of pre-migration dates versus departure date in 
Ruddy-headed Goose. Variance estimates for the variable Year as 
random effect: intercept: 0.52, Residual: 0.73.

Parameters (cj Eq.2) Estimate SE z-value p-value

Intercept 6.84 1.17 5.84 < 0.0001
Wind velocity 3.73 1.73 2.15 0.0316
Visibility −9.37 1.50 −6.26 < 0.0001
Cloud cover −1.98 0.98 −2.16 0.0312
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to be important factors in triggering departure (Åkesson 
and Hedenström 2000). Even though this suggests 
a possible explanation, more studies are needed to 
understand this relationship in waterfowl. Cloud cover 
was also related to the effect of artificial light at night 
and moon phase on sleep patterns in geese (Van Hasselt 
et al. 2021). Although we did not find an association 
with the moon phase in our study, Van Hasselt et al. 
(2021) suggested that cloud cover in new moon nights 
could amplify the immediate effects of artificial light at 
night, which could also increase their risk during flight, 
inducing disorientation and circular flight paths around 
the light (Van Doren et al. 2021).

Although we worked with only six tracked indi-
viduals, our results highlighted the importance of 
understanding the relationship between meteorolo-
gical conditions and the decision of Ruddy-headed 
Geese to start spring migration. This information is 
essential for future management plans to prevent an 
escalation of potential human-sheldgeese conflicts 
along their migration route. Future studies should 
focus on increasing the number of sampled indivi-
duals and improving the quality of weather data by 
installing portable weather stations in the fields 
used by the species. Pedrana et al. (2020) reported 
that the Ruddy-headed Geese migration is faster in 
the spring than the autumn, and that the time spent 
in each stopover site was shorter during spring. We 
believe that it is possible to predict the arrival date 

of Ruddy-headed Geese in stopovers and breeding 
areas based on the dates they decide to leave their 
wintering grounds. Thus, recommendations for 
conservation of this species that include intensifying 
efforts to prevent illegal hunting (Cossa et al. 2017) 
and implementing mitigation measures to reduce 
bird collision at wind farms, could be applied 
more specifically during the periods when birds 
are expected to arrive in each area. In addition, 
considering the number of wind farms along the 
migration route, being able to predict when this 
species is going to fly through these areas can 
allow authorities to implement mitigation measures 
to reduce bird mortality (Heuck et al. 2019; 
Marques et al. 2020). We encourage managers to 
consider shutting down turbines during strong 
winds, good visibility and low cloud cover between 
mid August and mid September each year.
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